Bauder Delivers Largest Solar Array in Higher Education Sector
The University of the West of England (UWE) in Bristol has recently quadrupled its solar generating capacity through the installation of 1,731 solar panels, which will enable it to produce over 400 MWh of electricity each year and making it the largest solar panel array in the UK university sector.
The new solar array has been installed on the roof of the University Enterprise Zone (UEZ) and the Bristol Robotics Laboratory, which have both undergone extensive refurbishment as part of the required works. Prior to the solar panels being installed, approved contractor Mitie Tilley Roofing overlaid the original failing single ply waterproofing with over 12,000m2 of Bauder’s lightweight, robust PVC
single ply waterproofing system Thermofol. The solar modules, which weigh just 12Kg/m2, were then fitted onto the waterproofing using a unique penetration-free, welding method by renewable energy specialists Dulas. This installation technique means that the roof is not compromised by penetrations for fixings nor is it ballasted, which would add additional weight loading to the roof.
The new photovoltaic system will generate at least 74.32 Megawatt Hours of solar power each year which should; cover half of the energy consumed within the building, save around 200 tonnes of carbon and provide annual savings of over £50,000 a year. The university is highly committed to sustainability and energy efficiency, and this solar project is just part of a much wider plan to achieve its carbon reduction goals and enhance local renewable energy capacity.
Fabia Jeddere-Fisher, Energy Engineer at UWE, stated, “From its conception, we chose a roofing system that would mean the flat roof would not need to be strengthened if we chose to add solar panels. Normally, panels placed on flat roofs require either weighing down or fixings that penetrate the roof membrane, which can introduce the risk of leaks. The system we have chosen means that the panels are welded into place, reducing load, and reducing the need for roof penetrations. The University will use 100% of the power generated by the PV array, which will be equal to the amount generated by nearly 200 homes with solar panels. As a large organisation we want to set an example for others to undertake similar projects."